The usage of

 technology to revive classical topics in mathematicsThierry (Noah) Dana-Picard

September $8^{\text {th }}, 2016$

CADGME 6

Sapientia University Târgu Mureş/Marosvásárhely, Romania

« Classical» teaching of mathematics

- Every domain is taught separately (Bourguignon 2002):
- Linear Algebra
- Calculus
- Probability
- Geometry
- Etc.

« Classical » teaching of mathematics

- Every domain is taught separately (Bourguignon 2002):
- Linear Algebra
- Calculus
- Probability
- Geometry
- Etc.
- «Applications of Calculus to Geometry » = Elementary Differential Geometry
- Linear Algebra and Geometry: the book by Jean Dieudonne.
- Today?

The usage of software: some remarks from the past

The design principles of the software (Yerushalmy 1999):

- Schwartz 1995: Tools for doing and tools for learning
- B. Leong (plenary address at the $3^{\text {rd }}$ Asian Technology Conference in Mathematics, Tsukuba, Japan, 1998): "It has to be more efficient in terms of performance time, it has to include as much math topics as possible, be a slick and easy to use consumer product and it should not introduce many changes in new versions so that the customer will be able to easily move from version to version".

The usage of software: some remarks from the past

The design principles of the software (Yerusalmy 1999):

- B. Leong (plenary address at the $3^{\text {rd }}$ Asian Technology Conference in Mathematics, Tsukuba, Japan, 1998): "It has to be more efficient in terms of performance time, it has to include as much math topics as possible, be a slick and easy to use consumer product and it should not introduce many changegil naw versio B OHt?henstomer will be able to easily move from version to version"."

Claim

The multi-purpose nature of a CAS enables to build bridges between mathematical domains which are generally taught separately.
The various registers of representation provided by CAS and other kinds of software, and their versatility enabling to switch between them correspond to the required skills for building these bridges.
For this, technology has to be used not as a bypass for a lack of theoretical knowledge, but as a facilitator to enhance new mathematical knowledge and more profound conceptual understanding.

Revival: what do we mean?

- To pour new contents into a classical topic
- To have a new insight into a classical topic
- To bring an old-classical topic which has been «forgotten» back to the stage

Revival: what do we mean?

- To pour new contents into a classical topic
- To have a new insight into a classical topic

Parametric

 integrals- To bring an old-classical topic which has been «forgotten» back to the stage

Differential Geometry:

- Isoptic curves
- Envelopes

Parametric definite integrals

- Important in Physics, and in general in engineering domains
- Paper-and-pencil work
- Computing using a CAS:
- Direct computations
- Usage of an implemented tutorial
- Hints: which method may be used
- If multiple methods are proposed, identities (integral combinatorial)
may be derived
- Find (other) mathematical meanings using other ICTs
- History of mathematics (MacTutor or else)
- Dictionary of mathematical notions
- ...
- Recall Janos Karsai's remark in his talk this morning @ CADGME 6 about Science courses for math students!!!!
- DP 2004,2005,2009,2011 - DP \& Zeitoun 2011,2015,2016

Example

paramint $:=\int_{0}^{\frac{\mathrm{Pi}}{4}} \tan (x)^{n} \mathrm{~d} x$

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x
$$

Trials with a CAS

for k from 0 to 8 do $\mathrm{eval}($ paramint, $n=k$) end do;

We identify the subsequences discovered \qquad

$$
\int_{0}^{\frac{1}{4} \pi} \tan (x)^{n} d x
$$

$$
\begin{gathered}
\frac{1}{4} \pi \\
\frac{1}{2} \ln (2) \\
1-\frac{1}{4} \pi \\
\frac{1}{2}-\frac{1}{2} \ln (2) \\
-\frac{2}{3}+\frac{1}{4} \pi \\
-\frac{1}{4}+\frac{1}{2} \ln (2) \\
\frac{13}{15}-\frac{1}{4} \pi \\
\frac{5}{12}-\frac{1}{2} \ln (2) \\
-\frac{76}{105}+\frac{1}{4} \pi
\end{gathered}
$$

Example

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x
$$

paramint $:=\int_{0}^{\frac{\mathrm{Pi}}{4}} \tan (x)^{n} \mathrm{~d} x$,

Trials with a CAS

for k from 0 to 8 do $\mathrm{eval}($ paramint, $n=k$) end do;

We identify the subsequences discovered \qquad previously

$$
\int_{0}^{\frac{1}{4} \pi} \tan (x)^{n} \mathrm{~d} x
$$

Actually, we could have begun with the CAS discovery, then find « manually » formulas for the sequences

$$
\begin{gathered}
\frac{1}{4} \pi \\
\frac{1}{2} \ln (2) \\
1-\frac{1}{4} \pi \\
\frac{1}{2}-\frac{1}{2} \ln (2) \\
-\frac{2}{3}+\frac{1}{4} \pi \\
-\frac{1}{4}+\frac{1}{2} \ln (2) \\
\frac{13}{15}-\frac{1}{4} \pi \\
\frac{5}{12}-\frac{1}{2} \ln (2) \\
-\frac{76}{105}+\frac{1}{4} \pi
\end{gathered}
$$

The sequence of denominators

Search: seq:1,3,15,105,315,3465,45045,45045

Displaying 1-1 of 1 result found.
page 1
Sort: relevance \mid references \mid number \mid modified \mid created Format: long \mid short \mid data

```
A025547 Least common multiple of {1,3,5,\ldots,2n-1}.
\(1,3,15,105,315,3465,45045,45045,765765,14549535,14549535,334639305\), \(1673196525,5019589575,145568097675,4512611027925,4512611027925,4512611027925\),
\(166966608033225,166966608033225,6845630929362225\) (list; graph; refs; listen; history; text; internal format) OFFSET 1,2
comments This sequence coincides with the sequence \(f(n)=\) denominator of \(1+1 / 3+1\) \(/ 5+1 / 7+\ldots+1 /(2 \mathrm{n}-1)\) iff \(\mathrm{n}<=38\). But \(\mathrm{a}(39)=\) \(6414924694381721303722858446525, f(39)=583174972216520118520259858775\). - T. D. Noe, Aug 042004 Coincides for \(n=1 . .42\) with the denominators of a series for Pi *sqrt (2)/4
MAPLE \(\quad\) A025547: \(=\) proc (n) local i, \(t 1 ; ~ t 1:=1\); for \(i\) from 1 to \(n\) do \(t 1:=1 \mathrm{~cm}(\mathrm{t} 1\), 2*i-1) ; od: t1; end;
f := n->denom(add \((1 /(2 * k-1), k=0 . . n))\); \# a different sequence!
```

CROSSREFS C A007509, 025550 , A075135. The numerators are in $\mathbf{A 0 7 4 5 9 9}$.
Cf . $\mathrm{AODOFT1} \mathrm{\delta}$ (LCM of $\{1 . . \mathrm{n}\}$).
Cf. $\overline{\mathrm{A}} 00540 \mathrm{~B}$.

The sequence of numerators

Search: seq:1,2,13,76,263,2578

Displaying 1-1 of 1 result found.
Sort: relevance \mid references \mid number \mid modified \mid created Format: long \mid short \mid data

```
A007509 Numerator of Sum_{k=0..n}(-1)^k/(2*k+1).}+2
                        (Formerly M2061)
    1, 2, 13, 76, 263, 2578, 36979, 33976, 622637, 11064338, 11757173, 255865444,
    1346255081, 3852854518, 116752370597, 3473755390832, 3610501179557, 3481569435902,
    133330680156299, 129049485078524, 5457995496252709 (list; graph; refs; listen; history; text; internal format)
    OFFSET 0,2
    COMMENTS Denominators of convergents to 4/pi.
    MAPLE {- A007509 := n->numer (add ((-1)^k/(2*k+1), k=0..n));
    CROSSREFS
    Denominators are A025547.
        ContrHivuten fxem Jemarmies W. Meijer, Nov 12 2009: (Start)
        Cf. A157142 and A166107.
```



```
        (End)
```

The two sequences are strongly connected:

1. We knew that previously
2. Students may have an indication to look for something else

Concrete meaning an application in soil mechanics

Soil failure (Glissement de terrain), Québec Maison des Préfontaines

Soil failure (Landslide @ Lac du Chambon, 2015, Isère, France)

Water flows between sand and clay

Concrete meaning an application in soil mechanics

soil moves in opposite directions

The transverse strain (strain due to the shear stress) at the failuep issconnected to friction angle via the shear stress at failure, according to the following equation:
where is the constant the failure the friction angle vary from 0 to

An expression far the total transversal deformation E:

$$
E=\int_{0}^{\pi / 4} \varepsilon_{12}(\varphi) d \varphi=A \sigma_{z}^{m} I_{m}
$$

One of the biggest soil failures (landslide) in Europe: La Clapière, Saint-Étienne-de-Tinée, France

Joint work with Nurit Zehavi and Giora Mann (Weizmann Institute)

ANALYTIC GEOMETRY: BISOPTIC CURVES FROM CONIC TO TORIC SECTIONS

Analytic geometry directrix/director circle

Analytic geometry: (b)isoptic curves

Examples of isoptic curves of an ellipse

We consider the ellipse whose equation is

$$
x^{2}+k y^{2}=1, k>0
$$

We consider now the general case: none of the tangents in the pair is parallel to the y axis, therefore both have a slope. Take a point $T\left(x_{0}, y_{0}\right)$; a line L through T and nonparallel to the y-axis has an equation of the form $y=m\left(x-x_{0}\right)+y_{0}$, where m is the slope of L. An ellipse has no singular point, thus Bezout's theorem (Berger 1996, section 16.4) ensures that the line L is tangent to the ellipse E if, and only if, it has a "double" point of intersection with the ellipse. The possible slopes are the following:

$$
m_{1}=\frac{\sqrt{x_{0}^{2}+y_{0}^{2} k^{2}-1}-k x_{0} y_{0}}{k\left(1-x_{0}^{2}\right)} \quad \text { and } \quad m_{2}=-\frac{\sqrt{x_{0}^{2}+y_{0}^{2} k^{2}-1}+k x_{0} y_{0}}{k\left(1-x_{0}^{2}\right)}
$$

where $x_{0}^{2}+y_{0}^{2} k^{2}>1$.

For tangents non parallel to the y-axis whose respective slopes are m_{1} and m_{2}, the condition is equivalent to $\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}=\tan \theta$.

The requested geometric locus is determined by the equation

$$
\begin{equation*}
\frac{2 k \sqrt{k^{2} y_{0}^{2}+x_{0}^{2}-1}}{1-k^{2}\left(x_{0}^{2}+y_{0}^{2}-1\right)}=\tan \theta \text {. } \tag{13}
\end{equation*}
$$

Denote $t=\tan \theta$ and square both sides of this equation. We obtan equation:

$$
\begin{equation*}
\frac{4 k^{2}\left(k^{2} y_{0}^{2}+x_{0}^{2}+1\right)}{\left(1-k^{2}\left(x_{0}^{2}+y_{0}^{2}-1\right)\right)^{2}}=t^{2} . \tag{14}
\end{equation*}
$$

Actually, the vanishing points of the denominator are points though which pass a suitable pair of tangents, one of the tangents being parallel to the y-axis. Multiplying both sides by the common denominator, we obtain the following polynomial equation of degree 4:

$$
\begin{align*}
& k^{4} t^{2} x^{4}+2 k^{4} t^{2} x^{2} y^{2}-2 k^{2}\left(k^{2} t^{2}+t^{2}+2\right) x^{2}+k^{4} t^{2} y^{4} \\
& -2 k^{2}\left(k^{2} t^{2}+2 k^{2}+t^{2}\right) y^{2}+k^{4} t^{2}+2 k^{2}\left(t^{2}+2\right)+t^{2}=0
\end{align*}
$$

The geometric locus of points from which the given conic ellipse E is viewed under a given angle θ is a called the θ-isoptic curve of the ellipse E for the given angle θ; we denote this curve by $O P T(k, \theta)$. The orthoptic curve of E is $O P T(k, 90)$. In Figure 6, we show the curves $\operatorname{OPT}(2,45), \operatorname{OPT}(2,135)$ and $\operatorname{OPT}(2,90)$. The equation describing together the first one and the last one is $16 x^{4}+32 x^{2} y^{2}+16 y^{4}-56 x^{2}-104 y^{2}+41=0$. This equation can be written under the form

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}-\frac{7}{2} x^{2}-\frac{13}{2} y^{2}+\frac{41}{16}=0 . \tag{16}
\end{equation*}
$$

Quartic - spiric curves

$$
\begin{aligned}
& k^{4} t^{2} x^{4}+2 k^{4} t^{2} x^{2} y^{2}-2 k^{2}\left(k^{2} t^{2}+t^{2}+2\right) x^{2}+k^{4} t^{2} y^{4} \\
& -2 k^{2}\left(k^{2} t^{2}+2 k^{2}+t^{2}\right) y^{2}+k^{4} t^{2}+2 k^{2}\left(t^{2}+2\right)+t^{2}=0
\end{aligned}
$$

This equation determines a (specific) quartic called a Spiric of Perseus.

A spiric curve is the intersection of a torus of revolution with a plane parallel to the axis of the torus (Wassenaar, etc.)

Toric intersections with a plane parallel to the torus axis

CADGME 6 in Tirgu Mures

Toric intersections with a plane parallel to the torus axis

(DP \& Kidron IJTME 2006 - DP, Kidron and Zeitoun IJTME 2008)

Two kinds of tori

（a）Non self intersecting
$R=5, r=2$
（b）self－intersecting $R=4, r=5$

Self-intersecting torus

(a) The torus
(b)View from inside

A toric intersection - spiric curve

D-P, Mann \& Zehavi (2011): From conic intersections to toric intersections: the case of the isoptic curves of an ellipse, The Montana Mathematical Enthusiast 9 (1), http://www.math.umt.edu/TMME/vol9no1and2/index.html.

D-P, Zehavi \& Mann (2014): Bisoptic curves of a hyperbola, International Journal of Mathematical Education in Science and Technology 45 (5), 762-781.

René Thom: Sur la théorie des enveloppes. J. Math. Pures et Appliquées, XLI,fasc. 2, 1962, pp. 177-192, « manuscritreçu le 25 avril 1960 ».

La récente réforme des études de licence en mathématiques a
 complètement évincé des programmes la théorie des enveloppes. ... je ne puis que trouver cette disparition très regrettable; rappelons ... le rôle des enveloppes dans la théorie des équations différentielles (intégrales singulières), et des équations aux dérivées partielles; mais est-il concevable qu'un professeur de lycée ait quelque usage des problèmes de la Géométrie Elementaire, sans connaître les phénomènes généraux de cette théorie?

Même d'un point de vue pratique, la théorie des envelopes rend compte de phénomènes familiers, sans elle inexpliqués; pour s'en convaincre, il suffit d'observer, à l'intérieur d'un bol hémisphérique de café au lait convenablement éclairé, la structure cuspidale des caustiques de réflexion, et leur variation quand l'éclairage se modi

Why envelopes disappeared from the curriculum

1. The classical theory is not rigorous enough
2. Too many particular cases: fixed points, singular points, stationary curves, etc.
3. Nothing ensures that all the "pathological" cases have been included in a catalogue
4. Actually: the theory is so rich that it is impossible to force it into the rules of a rigorous pedagogy.

Why envelopes disappeared from the curriculum

Téchnology may help to address these various problems and reV.ive the topic: articular cases: fixed points, singular points,

1. Enquiry:ary curves, etc.
2. a. Exploration with DGS and/on CAS cal" cases have been
b. Analytic work by hand/CAS
2.4. Algorithmization ory is so rich that it is impossible to force it into
3. Theoremization (Rásmussen, wawro, \& Zandieh, ESM 2015)
4. Possible byproducts:
a. New mathematical knowledge: surfaces, singularities, applications, etc.)
b. New computing skills: parametric solutions, algorithms René Thom based on Gröbner bases computations (Pech 200f)
Appliquées,Buchberger"s ${ }^{\text {k }}$ keynote à ACA 2015, DP-Zèhavi IJMEST 2016)

Why to revive these topics

- Interesting topic per se (not valid for all students)
- Nowadays provides a blended activity
- Envelopes may connect different topics

> Sprinklers ->

Pyrotechnical safety ->

Why to revive these topics

- Applications in science and engineering
- Theory of Singularities
- Geometrical Optics: Theory of Caustics, Wave Fronts
A caustic is the envelope of light rays reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another surface. The caustic is a curve (or surface) to which each of the light rays is tangent, defining a boundary of an envelope of rays as a curve of concentrated light. Therefore in the image to the right, the caustics are the bright edges. These shapes often have cusp singularities.
Ref: Arnold 1976, quoted by Capitanio 2002, and Thom 1962.

https://mathcination.wordpress.com/2016/02/15/ho w-algebra-sheds-light-on-things/

Why to revive these topics

- Applications in science and engineering
- Theory of Singularities
- Geometrical Optics: Theory of Caustics, Wave Fronts
- Robotics and kinematics: rigid body motion in the plane, in 3-space,
 collision avoidance of robot motion, construction of gears, etc. (Pottman and Peternell 2000).

Three descriptions of the envelope of a 1-parameter family of plane curves C_{t}

synthetic

impredicative
analytic
E is the union of
the characteristic points; the
characteristic point
M_{t} is the limit point of the family of
intersections
$C_{\mathrm{t}} \cap C_{\mathrm{t}+\mathrm{h}}$ as $h \rightarrow 0$.

Three descriptions of the envelope of a 1-parameter family of plane curves C_{t}

synthetic

impredicative
analytic
E is the union of the characteristic points; the characteristic point M_{t} is the limit point of the family of intersections

$$
C_{\mathrm{t}} \cap C_{\mathrm{t}+\mathrm{h}} \text { as } h \rightarrow 0
$$

Which space? Which topology? The definition is not rigorous!!!

Three descriptions of the envelope of a 1-parameter family of surfaces S_{t} in 3 -space

synthetic
E is the union of the characteristic points; the characteristic point M_{t} is the limit point of the family of intersections $C_{\mathrm{t}} \cap C_{\mathrm{t}+\mathrm{h}}$ as $h \rightarrow 0$.
impredicative
E is a curve such that at each of its points, it is
tangent to a
unique curve
from the given
family. The locus
of points where E
touches C_{t} is called
the E -
characteristic M_{t}
analytic

Three descriptions of the envelope of a 1-parameter family of plane curves C_{t}

synthetic
E is the union of the characteristic points; the characteristic point M_{t} is the limit point unique curve from of the family of intersections $C_{\mathrm{t}} \cap C_{\mathrm{t}+\mathrm{h}}$ as $h \rightarrow 0$.
impredicative
E is a curve such
that at each of its
points, it is
tangent to a
the given family.
The locus of points
where E touches $C_{\text {t }}$
is called the E -
characteristic M_{t}

Uniqueness is not clear!!! No constructio algorithm!!!!

Here technology may help

Experimental work using dynamical geometry

With a slider bar

- A family of circles centered

- Pros and cons:
- Uses analytic presentation (equations)
- More uniform repartition of the curves in the family
- Not always useful: the example of a nephroid

Three descriptions of the envelope of a 1-parameter family of surfaces M_{t} in 3-space
synthetic
E is the union of the characteristics; the characteristic
C_{t} is the limit curve of the family of intersections
$M_{t} \cap M_{t+h}$ as $h \rightarrow 0$.
impredicative
E is a surface such that at each of its points, it is
tangent to a unique surface from the given family. The locus of points where E touches S_{t} is called the E -
characteristic C_{t}
analytic
Two
descriptions, according to whether the family is given by an implicit
or a parametri
presentation.

Analytic presentations of an envelope of a 1-

parameter family of surfaces

implicit
The envelope of a 1parameter family of surfaces given by an equation $F(x, y, z, c)=0$ is determined by the solution of the system of equations:

$$
\left\{\begin{array}{l}
F(x, y, z, c)=0 \\
\frac{\partial F(x, y, z, c)}{\partial c}=0
\end{array}\right.
$$ bases algortihms

parametric
The envelope of a 1parameter family of surfaces given by a parametrization $(M(u, v, t))_{u, v}$, is determined by the solution of

$$
\operatorname{det}\left(\frac{\partial \vec{M}}{\partial u}, \frac{\partial \vec{M}}{\partial v}, \frac{\partial \vec{M}}{\partial t}\right)=0
$$

Elimination of one of the three parameters u, v, t, yields a parametrization of the envelope.

Transition form 2D to 3D

- The equations look similar
- The algebraic part of the work follows the same path
- Some of the graphical features of the software are not available anymore.
- This last point make the transition critical.

A 1-parameter family of planes

$$
\begin{aligned}
& x+t y+t^{2} z=t^{3} \\
& t \in \mathrm{R}
\end{aligned}
$$

We find:

1. A parametric presentation of the envelope
2. An implicit presentation of the envelope
3. A description of the cuspidal edge of the envelope

Problem with implicitization

Solving the system

$$
\left\{\begin{array}{l}
F(x, y, z, t)=0 \\
\frac{\partial F}{\partial t}(x, y, z, t)=0
\end{array}\right.
$$

yields a parameterization of the envelope

$$
\left\{\begin{array}{l}
x=x(u, v) \\
y \doteq y(u, v) \\
z=z(u, v)
\end{array}\right.
$$

Question: when is it possible to find an implicit form for an equation of the envelope?
Answer: not always.
Partial solution: approximate implicitization (T. Schultz and B. Juttler 2010)

A 2-parameter family of planes

$$
\begin{aligned}
& x+(u+v) y+\left(u^{2}+v^{2}\right) z=\left(u^{3}+v^{3}\right) \\
& u, v \in \mathrm{R}
\end{aligned}
$$

We look for:

1. A parametric presentation of an envelope
2. An implicit presentation of this envelope

Wait a minute, we will have a surprise!!!!

Result comparison：first glance

One step further

The surface determined by the implicit equation

The surface determined by the parametric presentation

One step further

The surface determined by the implicit equation

Implicitization is one-way process, i.e. a logical implication, not a logical equivalence

The surface determined by the parametric presentation

The envelope is a variety with a boundary!!!! It seems that we could not have discovered that without the technology

Revival? We may obtain more than that!!!!

- To pour new contents into a classical topic
- To have a new insight into a classical topic
- To bring an old-classical topic which has been «forgotten » back to the stage
- To discover new results (which may not have been seen without technology), i.e.
- Explore the student's Zone of Proximal Developement (Vigotsky, 1978).
- Develop students' creativity
- The Gröbner bases methods may be used in higher dimensions, where the graphical methods are inexistent

A PROJECT WHICH BEGAN RECENTLY

The Tirgu Mures synagogue， built 1900

The Tirgu Mures synagogue， built 1900

The Wijnitzer Klaus synagogue in Sighet，built 1885

Symmetry in Tables of the Covenant

Synagogue in Lausanne

Prague: the Spanish Synagogue

The issue of the tables' symmetry has been addessed in details by Rabbi Moshe ben Yossef di Trani (15001580), one of the most important Talmudists from his time until today, in Safed (Galilee).

Source: DP, talk @ Symmetry Festival, Vienna 2016 and a submitted paper

Jewish Maths (Talmud)

Computing the Jewish Calendar (lunar and solar)

 An approach looking as integral calculus

Biblical length unit:: 58 Fibonacci numbers

Rabbi-student relationship

Dupap
Software by Y. Hacohen-Kerner, 2010
\title{ אודת צוד

מאת }

table I

THE MANY FACES OF ORTHODOXY (Arrows indicate student-teacher relationships) - The Rabbis

Hest (Germany, United Kingdom, North America)

Revival: what do we mean?

- To pour new contents into a classical topic

Parametric integrals

- To have a new insight into a classical topic:
- Architecture
- Art
- To bring an old-classical topic which has been «forgotten» back to the stage

Differential Geometry:

- Isoptic curves
- Envelopes

All this is part of STEAM education

CONCLUSIONS?

ICT environment: CAS, DGS, databases, ... the choices

- Button driven vs command driven: depends on the student/educator
- More than one CAS/DGS:
- Switching from one register A of representation to another register B is not always available
- Every CAS switches from algebraic representation to geometrical representation
- Reverse switching, from geometry to algebra, is generally not given
- Dynamical features
- Moving around with the mouse
- For studying loci, a Trace feature
- More important: a slider bar

ICT environment: CAS, DGS, databases, ...

- Button driven vs command driven: depends on the student/educator
- More than one CAS/DGS:
- Switching from one register A of representation to another register B is not always available

$D 2$ Every CAS switches from algebraic representation to geome rina

- GeoGebra switches automatically from geometry to algebra, others generally do not
- Dynamical features
- Moving around with the mouse
- For studying loci, a Trace feature
- More important: a slider bar

Very important

- The technology:
- Use more than one CAS/DGS
- Web database
- Two basic functions of the usage of technology (Artigue 2002):
- Pragmatic value
- Epistemic value
- For the teacher:
- The need for a « technological discourse » (Artigue 2002)

The influence of the institution

- Institutional culture:
- Team work / multidisciplinarity
- As a whole is there an institutional culture for STEAM education?
- ICT enriched teaching, not only in maths
- How ICTs are used in math education?
- Which packages are available?
- May new packages be purchased?

Al Cuoco and P.Goldenberg (1996)

The mathematics curriculum must be restructured to include activities that allow students to experiment and build models to help explain mathematical ideas and concepts.
Technology can be used most effectively to help students gather data, and test, modify, and reject or accept conjectures as they think about these mathematical con $\hat{\text { eppepts and experience }}$ mathematical research.

> Conjecture, and then prove!!!

Artigue (IJCML - 2002)

What is firstly asked of software and computational tools is to be pedagogical instruments for the learning of mathematical knowledge and values which were defined in the past, mostly before these tools existed. The tools are also put forward to help in the fight against "inadequate" teaching practices: practices too much orientated towards pure lecturing or the procedural learning of mathematical skills

JERUSALEM COLLEGE OF TECHNOLOGY
 LEV ACADEMIC CENTER

The Roland and Astrid Dana-Picard Chair for
Mathematics, Education and Judaism
thank you mulțumesc
köszönöm
Merci hvala danke děkuji obrigado gracias спасибі

